Drake equation | Searching for ET, SETI, Habitable Planets (2024)

astronomy

verifiedCite

While every effort has been made to follow citation style rules, there may be some discrepancies.Please refer to the appropriate style manual or other sources if you have any questions.

Select Citation Style

Print

verifiedCite

While every effort has been made to follow citation style rules, there may be some discrepancies.Please refer to the appropriate style manual or other sources if you have any questions.

Select Citation Style

Feedback

Thank you for your feedback

Our editors will review what you’ve submitted and determine whether to revise the article.

Also known as: Green Bank equation

Written and fact-checked by

The Editors of Encyclopaedia Britannica Encyclopaedia Britannica's editors oversee subject areas in which they have extensive knowledge, whether from years of experience gained by working on that content or via study for an advanced degree. They write new content and verify and edit content received from contributors.

The Editors of Encyclopaedia Britannica

Last Updated: Article History

Category:

Also called:
Green Bank equation

See all related content →

Drake equation, equation that purports to yield the number N of technically advanced civilizations in the Milky Way Galaxy as a function of other astronomical, biological, and psychological factors.

(Read Carl Sagan’s Britannica entry on extraterrestrial life.)

More From Britannicaextraterrestrial life: The Drake equation and extrasolar life

Formulated in large part by the U.S. astrophysicist Frank Drake, it was first discussed in 1961 at a conference on the “search for extraterrestrial intelligence” (SETI), held at the National Radio Astronomy Observatory in Green Bank, W.Va. The equation states N = R*fpneflfifcL.

The factor R* is the mean rate of star formation in the Galaxy; fp the fraction of stars with planetary systems; ne the number of planets in such systems that are ecologically suitable for the origin of life; fl the fraction of such planets on which life in fact develops; fi the fraction of such planets on which life evolves to an intelligent form; fc the fraction of such worlds in which the intelligent life form invents high technology capable at least of interstellar radio communication; and L, the average lifetime of such advanced civilizations. These numbers are poorly known, and the uncertainty increases progressively with each factor on the right-hand side of the equation. Widely quoted but at best vaguely known values for these factors are: R* = 10/yr, fp = 0.5, ne = 2, fl = 1, fi fc = 0.01, and thus N = L/10. Accordingly, if civilizations characteristically destroy themselves within a decade of achieving radio astronomy, which is taken as a marker of an advanced civilization, then N = l, and there are no other intelligent life forms in the Galaxy with whom terrestrial researchers can communicate. If, on the other hand, it is assumed that one percent of the civilizations learn to live with the technology of mass destruction and themselves, then N = 1,000,000, and the nearest advanced civilization would be on average a few hundred light-years away.

This article was most recently revised and updated by Amy Tikkanen.

Drake equation | Searching for ET, SETI, Habitable Planets (2024)
Top Articles
Latest Posts
Article information

Author: Tuan Roob DDS

Last Updated:

Views: 6211

Rating: 4.1 / 5 (42 voted)

Reviews: 89% of readers found this page helpful

Author information

Name: Tuan Roob DDS

Birthday: 1999-11-20

Address: Suite 592 642 Pfannerstill Island, South Keila, LA 74970-3076

Phone: +9617721773649

Job: Marketing Producer

Hobby: Skydiving, Flag Football, Knitting, Running, Lego building, Hunting, Juggling

Introduction: My name is Tuan Roob DDS, I am a friendly, good, energetic, faithful, fantastic, gentle, enchanting person who loves writing and wants to share my knowledge and understanding with you.